class: center, middle, inverse, title-slide .title[ # Breeding value and dominance ] .author[ ### Jinliang Yang ] .date[ ### Mar. 20, 2024 ] --- # Genotypic value | Genotype | Freq. | Value | Freq. `\(\times\)` Val. | | :-------: |: ------- :| :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(+a\)` | `\(p^2a\)` | | `\(A_1A_2\)` | `\(2pq\)` | `\(d\)` | `\(2pqd\)` | | `\(A_2A_2\)` | `\(q^2\)` | `\(-a\)` | `\(-q^2a\)` | | | | Sum = | `\(a(p-q) + 2pqd\)` | -- ### Parents pass on **alleles**, not genotypes. -- ### Average Effect of `\(A_1\)` and `\(A_2\)` --- # Average Effect of `\(A_1\)` and `\(A_2\)` The average effect of `\(A_1\)` is the **mean deviation** from the **population mean** of individuals which received that allele from one parent, and the alleles received from the other parents being at random. -- According to Falconer & Mackey `Table 7.2`: `\begin{align*} \alpha_1 = q(a + d(q-p)) \end{align*}` `\begin{align*} \alpha_2 = -p(a + d(q-p)) \end{align*}` -- ### Allele substitution effect `\begin{align*} \alpha = \alpha_1 - \alpha_2 = a + d(q-p) \\ \end{align*}` -- therefore, `\begin{align*} \alpha_1 = & q\alpha \\ \alpha_2 = & -p\alpha \\ \end{align*}` --- # Breeding value (A) Breeding value is the "value" of an individual as a parent. - The value of an individual, judged by the mean value of its progeny, is called the *breeding value* (__A__) of the individual. - Note that breeding value is **population specific**. -- ### Theoretical definition Sum of the average effects of the alleles an individual carries. `\begin{align*} BV = \sum_{i=1}^k\sum_{j=1}^2\alpha_{ij} \end{align*}` Where summation occurs across the number of loci ( `\(k\)` ) and the two alleles present at each locus. --- # Breeding value (A) ### Operational/Practical definition The deviation of the value of an individual's offspring from the population mean. .pull-left[ <div align="center"> <img src="bv.png" height=300> </div> ] -- .pull-right[ ### To get the BV of sire X 1. mate it to many random dams 2. measure the performance of all the offspring 3. subtract population mean from the offspring mean and multiply by 2 ] --- # Breeding value (A) Consider only one locus using the theoretical definition: | Genotype | Breeding Value | | :-------: | :-------: | | `\(B_1B_1\)` | `\(2\alpha_1\)` | | `\(B_1B_2\)` | `\(\alpha_1 + \alpha_2\)` | | `\(B_2B_2\)` | `\(2\alpha_2\)` | -- ### Booroola locus example Returning to our two example populations and looking at breeding values of the three genotypes. - Recall that `\(a=0.59\)` and `\(d=0.39\)` - In __pop1__, freq of `\(B_1\)` allele is 0.25 - In **pop2**, freq of `\(B_1\)` allele is 0.85 --- # Breeding value (A) Consider only one locus using the theoretical definition: | Genotype | Breeding Value | BV of pop1 | BV of pop2 | | :-------: | :-------: | | | | `\(B_1B_1\)` | `\(2\alpha_1\)` | | | | `\(B_1B_2\)` | `\(\alpha_1 + \alpha_2\)` | | | | `\(B_2B_2\)` | `\(2\alpha_2\)` | | | ### Booroola locus example Returning to our two example populations and looking at breeding values of the three genotypes. - Recall that `\(a=0.59\)` and `\(d=0.39\)` - In __pop1__, freq of `\(B_1\)` allele is 0.25 - In **pop2**, freq of `\(B_1\)` allele is 0.85 - `\(\alpha = a+d(q-p)\)`, 0.785 for pop1 and 0.317 for pop2 --- # Breeding value (A) Consider only one locus using the theoretical definition: | Genotype | Breeding Value | BV of pop1 | BV of pop2 | | :-------: | :-------: | :----: | :----: | | `\(B_1B_1\)` | `\(2\alpha_1\)` | 1.18 | 0.10 | | `\(B_1B_2\)` | `\(\alpha_1 + \alpha_2\)` | 0.39 | `\(-0.22\)` | | `\(B_2B_2\)` | `\(2\alpha_2\)` | `\(-0.39\)` | `\(-0.54\)` | ### Booroola locus example Returning to our two example populations and looking at breeding values of the three genotypes. - Recall that `\(a=0.59\)` and `\(d=0.39\)` - In __pop1__, freq of `\(B_1\)` allele is 0.25 - In **pop2**, freq of `\(B_1\)` allele is 0.85 - `\(\alpha = a+d(q-p)\)`, 0.785 for pop1 and 0.317 for pop2 This demonstrates that the BV of an individual is dependent on the population of reference. In pop1, where the freq of `\(B_1\)` is less, there is greater value of an `\(B_1B_1\)` individual as a parent. --- # Breeding value (A) Consider only one locus using the theoretical definition: | Genotype | Breeding Value | Freq | | :-------: | :-------: | :----: | | `\(B_1B_1\)` | `\(2\alpha_1=2q\alpha\)` | `\(p^2\)` | | `\(B_1B_2\)` | `\(\alpha_1 + \alpha_2 = q\alpha - p\alpha\)` | `\(2pq\)` | | `\(B_2B_2\)` | `\(2\alpha_2 = -2p\alpha\)` | `\(q^2\)` | ### What is the mean BV if the population is in HWE? -- `\begin{align*} BV = & 2q\alpha \times p^2 + (q\alpha - p\alpha) \times 2pq - 2p\alpha \times q^2 \\ = & 2pq\alpha \times (p +q) - 2pq\alpha \times (p + q) \\ = & 0 \end{align*}` --- # BV of offspring The expected breeding value of offspring (o) is `\(1/2\)` the sum of the sire and dam breeding values. `\begin{align*} E(A_o) = & 1/2(A_s + A_d) \end{align*}` Note here `\(o\)`, `\(s\)`, and `\(d\)` refer to offspring, sire (male), and dam (female) respectively. -- - Different offspring of the same parents will differ in BV -- - The expected BV is also the individual's expected phenotypic value `\begin{align*} E(P_o) = E(A_o) = & 1/2(A_s + A_d) \end{align*}` --- # Dominance deviation (D) We can examine the failure of the additive value to reflect the genotypic value as a deviation --- **a dominance deviation**. -- ### G = A + D - Population mean: `\(M = a(p-q) + 2dpq\)` - Avg. allele substitution effect: `\(\alpha = a+d(q-p)\)` | Genotype | Genotypic Value | Value as deviated from `\(M\)` | | :-------: | :-------: | :-----------: | | `\(A_1A_1\)` | `\(a\)` | ? | | `\(A_1A_2\)` | `\(d\)` | ? | | `\(A_2A_2\)` | `\(-a\)` | ? | --- # Dominance deviation (D) We can examine the failure of the additive value to reflect the genotypic value as a deviation --- **a dominance deviation**. ### G = A + D - Population mean: `\(M = a(p-q) + 2dpq\)` - Avg. allele substitution effect: `\(\alpha = a+d(q-p)\)` | Genotype | Genotypic Value | Value as deviated from `\(M\)` | | :-------: | :-------: | :-----------: | | `\(A_1A_1\)` | `\(a\)` | `\(a -M = 2q(a-pd) = 2q(\alpha - qd)\)` | | `\(A_1A_2\)` | `\(d\)` | `\(d- M = a(q-p) + d(1-2pq) = (q-p)\alpha + 2pqd\)` | | `\(A_2A_2\)` | `\(-a\)` | `\(-a-M = -2p(a+qd) = -2p(\alpha + pd)\)` | --- # Dominance deviation (D) We can examine the failure of the additive value to reflect the genotypic value as a deviation --- **a dominance deviation**. -- ### G = A + D | Genotype | Value as deviated from `\(M\)` | Breeding Value | Dominance Deviation | | :-------: | :-----------: | :-----------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(2q(\alpha - qd)\)` | `\(2q\alpha\)` | ? | | `\(A_1A_2\)` | `\((q-p)\alpha + 2pqd\)` | `\((q-p)\alpha\)` | ? | | `\(A_2A_2\)` | `\(-2p(\alpha + pd)\)` | `\(-2p\alpha\)` | ? | --- # Dominance deviation (D) We can examine the failure of the additive value to reflect the genotypic value as a deviation --- **a dominance deviation**. ### G = A + D | Genotype | Value as deviated from `\(M\)` | Breeding Value | Dominance Deviation | | :-------: | :-------: | :-----------: | :-----------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(2q(\alpha - qd)\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | | `\(A_1A_2\)` | `\((q-p)\alpha + 2pqd\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | | `\(A_2A_2\)` | `\(-2p(\alpha + pd)\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | - Note that in the absence of dominance, breeding values and genotypic values are the same. --- # Dominance deviation (D) | Genotype | Value as deviated from `\(M\)` | Breeding Value | Dominance Deviation | | :-------: | :-------: | :-----------: | :-----------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(2q(\alpha - qd)\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | | `\(A_1A_2\)` | `\((q-p)\alpha + 2pqd\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | | `\(A_2A_2\)` | `\(-2p(\alpha + pd)\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | - It follows that the mean dominance deviation is zero. -- The mean dominance deviation: `\begin{align*} = & p^2 \times (-2q^2d) + 2pq \times 2pqd + q^2 \times (-2p^2d) \\ = & - 2p^2q^2d + 4p^2q^2d - 2p^2q^2d \\ = & 0 \end{align*}` --- # Interaction deviation (epistasis) - Epistasis = interaction of alleles at **different** loci - Also causes deviation of genotypic value from additive genetic value (or BV) -- Imagine a trait controlled by two loci, A and B. Then `\begin{align*} G = & G_A + G_B + I_{AB} \\ = & (\alpha_i + \alpha_j + \delta_{ij}) + (\alpha_k + \alpha_l + \delta_{kl}) + I_{AB} \end{align*}` -- Where `\begin{align*} I_{AB} = & \alpha_i\alpha_k + \alpha_i\alpha_l + \alpha_j\alpha_k + \alpha_j\alpha_l \\ & + \alpha_i\delta_{kl} + \alpha_j\delta_{kl} + \alpha_k\delta_{ij} + \alpha_l\delta_{ij} \\ & + \delta_{ij}\delta_{kl} \end{align*}` --- # Interaction deviation (epistasis) - Interaction effect can arise through interaction - Between the average allele effects at each locus ( __A__ `\(\times\)` __A__ ) - Between average effect and dominance deviation ( __A__ `\(\times\)` __D__ ) - And between dominance deviations ( __D__ `\(\times\)` __D__ ) - As # of loci increases, so does # of interactions (exponentially) -- - Summed to contribute to the epistatic deviation ( `\(I\)` ) `\begin{align*} G = \sum_{i=1}^k(A_i + D_i) + I \end{align*}`