class: center, middle, inverse, title-slide .title[ # Heterosis and Inbreeding Depression ] .author[ ### Jinliang Yang ] .date[ ### April 22, 2024 ] --- # Heterosis In the absence of selection, the heterosis on crossing a set of random lines is the same as the depression upon inbreeding. -- .pull-left[ <div align="center"> <img src="figure14.2_het.png" height=380> </div> > Springer and Stupar, 2007 ] -- .pull-right[ <div align="center"> <img src="figure14.3_yield.png" height=300> </div> > Crow 1998 ] --- # Heterosis .pull-left[ <div align="center"> <img src="figure14.4_m1.png" height=300> </div> > East, 1936; Shull, 1948; Crow, 1998; Charlesworth and Charlesworth, 1999 ] -- .pull-right[ <div align="center"> <img src="figure14.5_m2.png" height=300> </div> > Crow 1948; Gowen, 1952 ] -- ---------- - __Pseudo-overdominance__: _Cockerham and Zeng, 1996_ - __Dosage__: _Birchler et al., 2003_ --- # Measurement of heterosis The theoretical conclusion depends upon crossing a large number of random lines from the base population. -- Here, let's turn from the average consequences of crossing to the specific crossing of two lines. .pull-left[ <div align="center"> <img src="figure14.6_f1.png" height=250> </div> ] -- ### High-parental heterosis `\begin{align*} & F_1 - Max(P_1, P_2) \\ \end{align*}` ### Mid-parental heterosis `\begin{align*} & F_1 - mean(P_1, P_2) \\ \end{align*}` --- # Mid-parental heterosis | | Freq ( `\(A_1\)` ) | Freq ( `\(A_2\)` ) | | :-------: | :-------: | :--------: | | `\(P_1\)` | `\(p\)` | `\(q\)` | | `\(P_2\)` | `\(p'\)` | `\(q'\)` | | `\(P_1 - P_2\)` | `\(y=p-p'\)` | `\(y=q'-q\)` | | `\(P_2\)` re-written | `\(p'=p-y\)` | `\(q'=q+y\)` | -- #### Population Mean `\begin{align*} & M = a(p-q) + 2dpq \\ \end{align*}` -- Therefore, `\begin{align*} M_{P_1} & = a(p-q) + 2dpq \\ M_{P_2} & = a(p'-q') + 2dp'q' \\ & = a(p-y - q -y ) + 2d(p-y)(q+y) \\ \end{align*}` -- The mid-parent genotypic value: `\begin{align*} M_\bar{P} & = 1/2(M_{P_1} + M_{P_2}) \\ & = a(p-q-y) +d[2pq + y(p-q) -y^2] \\ \end{align*}` --- # Genotypic value for F1 Frequencies: | | __pop1 ( `\(p\)` )__ | __pop1 ( `\(q\)` )__ | | :-------: | :-------: | :--------: | | __pop2 ( `\(p-y\)` )__ | `\(p(p-y)\)` | `\(q(p-y)\)` | | __pop2 ( `\(q+y\)` )__ | `\(p(q+y)\)` | `\(q(q+y)\)` | -- Genotypic values: | | __A1__ | __A2__ | | :-------: | :-------: | :--------: | | __A1__ | `\(A_1A_1=a\)` | `\(A_1A_2=d\)` | | __A2__ | `\(A_1A_2=d\)` | `\(A_2A_2=-a\)` | -- The mean genotypic value of the F1: `\begin{align*} M_{F_1} & = ap(p-y) + dq(p-y) + dp(q+y) -aq(q+y) \\ & = a(p-q-y) +d[2pq + y(p-q)] \\ \end{align*}` --- # Mid-parental heterosis `\begin{align*} & H_{F_1} = M_{F_1} - M_\bar{P} \\ \end{align*}` -- `\begin{align*} & M_{F_1} = a(p-q-y) +d[2pq + y(p-q)] \\ & M_\bar{P} = a(p-q-y) +d[2pq + y(p-q) -y^2] \\ \end{align*}` -- -------- `\begin{align*} & H_{F_1} = M_{F_1} - M_\bar{P} = dy^2\\ \end{align*}` Remember, `\(y\)` is the difference in allele frequency between populations. -- ### Extending across all loci `\begin{align*} & H_{F_1} = \sum_{i=1}^n dy^2\\ \end{align*}` --- # About MPH `\begin{align*} & H_{F_1} = \sum_{i=1}^n dy^2\\ \end{align*}` - `\(y\)` is the difference in allele frequency between populations. - `\(n\)` is the number of loci in contributing to heterosis. -- ### Three conclusions: - __Directional dominance__ is required for heterosis -- - Amount of heterosis __specific to each individual cross__ -- - If lines with `\(F=1\)` crossed, then `\(y^2\)` can be only 1 or 0. If that is the case, then `\(H\)` is the summation of `\(d\)`s across loci with different alleles at each locus. - Recall that `\(F\)` here is the inbreeding coefficient. --- # Heterosis in F2 generation F2 being made by random mating among the individuals of the F1. - Because of the random mating, allele freq in F2 will be the HW freq of the F1 - Allele freq in F1, being the mean of the allele freq in the two parental popl.s `\(=\frac{p + p'}{2}=(p -\frac{1}{2}y)\)` - Similarly, another allele freq `\(=(q + \frac{1}{2}y)\)` - Plug these values in to the function to calculate population mean `\(M = a(p-q) + 2dpq\)` -- ### Population Mean and heterosis `\begin{align*} & M_{F_2} = a(p-q-y) + d[2pq + y(p-q) - \frac{1}{2} y^2] \\ \end{align*}` -- `\begin{align*} H_{F_2} & = M_{F_2} - M_{\bar{P}} \\ & = \frac{1}{2}dy^2 = \frac{1}{2}H_{F_1} \\ \end{align*}` --- # Inbreeding decreases population mean The change of mean from F1 to F2 may therefore be regarded as __inbreeding depression__ -- .pull-left[ Reduction of the __mean phenotypic value__ displayed by characters associated with reproductive capacity or physiological efficiency. ] -- .pull-right[ <div align="center"> <img src="table14.1.png" height=350> </div> ] --- # Inbreeding decreases population mean The change of mean from F1 to F2 may therefore be regarded as __inbreeding depression__ .pull-left[ Reduction of the __mean phenotypic value__ displayed by characters associated with reproductive capacity or physiological efficiency. - Tends to affect traits related to __fitness and viability__ more than other traits. ] .pull-right[ <div align="center"> <img src="table14.1.png" height=350> </div> ] --- # Inbreeding coefficient (F) .pull-left[ - Average allele frequency across entire population does not change, they only change within each line. - Any change in mean value must be caused by changes in __genotype frequencies__. - As inbreeding coefficient (F) increases: - frequency of __heterozygotes goes down__ - frequency of __homozygotes goes up__ ] .pull-right[ <div align="center"> <img src="figure14.1_basepop.png" height=300> </div> ] -- What we want to know is __the change in mean value__ across all lines derived from a base population. --- # Inbreeding depression From Chapter 3 that the genotype frequencies after inbreeding are | Genotype | Freq | Value | | :-------: | :-------: | :--------: | | `\(A_1A_1\)` | `\(\bar{p}^2 + \bar{p}\bar{q}F\)` | `\(a\)` | | `\(A_1A_2\)` | `\(2\bar{pq} - 2\bar{p}\bar{q}F\)` | `\(d\)` | | `\(A_2A_2\)` | `\(\bar{q}^2 + \bar{p}\bar{q}F\)` | `\(-a\)` | where, `\(\bar{p}\)` and `\(\bar{q}\)` are the allele frequencies in the whole population. --- # Inbreeding depression From Chapter 3 that the genotype frequencies after inbreeding are | Genotype | Freq | Value | Freq `\(\times\)` value | | :-------: | :-------: | :--------: | :------------:| | `\(A_1A_1\)` | `\(\bar{p}^2 + \bar{p}\bar{q}F\)` | `\(a\)` | `\(\bar{p}^2a + \bar{p}\bar{q}Fa\)` | | `\(A_1A_2\)` | `\(2\bar{pq} - 2\bar{p}\bar{q}F\)` | `\(d\)` | `\(2\bar{pq}d - 2\bar{p}\bar{q}Fd\)` | | `\(A_2A_2\)` | `\(\bar{q}^2 + \bar{p}\bar{q}F\)` | `\(-a\)` | `\(-\bar{q}^2a - \bar{p}\bar{q}Fa\)` | where, `\(\bar{p}\)` and `\(\bar{q}\)` are the allele frequencies in the whole population. -- ### The population mean after inbreeding is then `\begin{align*} M_F & = \bar{p}^2a + \bar{p}\bar{q}Fa + 2\bar{pq}d - 2\bar{p}\bar{q}Fd -\bar{q}^2a - \bar{p}\bar{q}Fa \\ & = a(\bar{p}^2 - \bar{q}^2) + 2d\bar{p}\bar{q}(1-F) \\ & = a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q}(1-F) \\ \end{align*}` -- Note that `\(M_0\)` is the population mean before inbreeding. `\begin{align*} M_0 = a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q} \\ \end{align*}` --- # The population mean after inbreeding `\begin{align*} & M_F = a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q}(1-F) \\ & M_0 = a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q} \\ \end{align*}` -- Therefore, `\begin{align*} M_F = M_0 - 2d\bar{p}\bar{q}F \\ \end{align*}` where `\(M_0\)` here is the population mean before inbreeding. -- ### Equation about inbreeding depression This equation brings two important points: - Change in population mean __only occurs when `\(d \neq 0\)`__. - A locus contributes to inbreeding depression most __when `\(p = q = 0.5\)`__. --- # Combined effects of all loci `\begin{align*} M_F & = \sum a(\bar{p} - \bar{q}) + 2\sum d\bar{p}\bar{q}(1-F) \\ & = \sum a(\bar{p} - \bar{q}) + 2\sum d\bar{p}\bar{q} - 2F\sum d\bar{p}\bar{q} \\ \end{align*}` ### Equation interpretation - This means that a preponderance of dominance in one direction is needed. - e.g., the alleles that increase the trait value need to be dominant more than recessive. - In the absence of epistasis, `\(M_F\)` declines linearly with increasing `\(F\)`.