class: center, middle, inverse, title-slide .title[ # Heritability: precision of estimation ] .author[ ### Jinliang Yang ] .date[ ### April 8, 2024 ] --- # Variance componenets in a sib design | Source | df | Sums of Squares | MS | E(MS) | | :------: | :-------: | :--------------------:|:------: | :---------------: | | Sires | s-1 | `\(dn\sum\limits_{i=1}^s(\bar{p}_i - \bar{p})^2\)` | `\(MS_s\)` | `\(= \sigma_w^2 + n\sigma_d^2 + dn\sigma_s^2\)` | | Dams (Sires) | s(d-1) | `\(n\sum\limits_{i=1}^s\sum\limits_{j=1}^d(\bar{p}_{ij} - \bar{p}_i)^2\)` | `\(MS_d\)` | `\(= \sigma_w^2 + n\sigma_d^2\)` | | Sibs (Dams) | sd(n-1) | `\(\sum\limits_{i=1}^s\sum\limits_{j=1}^d\sum\limits_{k=1}^n(p_{ijk} - \bar{p}_{ij})^2\)` | `\(MS_w\)` | `\(= \sigma_w^2\)` | -- Under the assumption that individuals are random members of the same population: #### Phenotypic variance Phenotypic variance is the sum ( `\(\sigma_T^2\)` ) of the three observational components: `\begin{align*} V_P & = \sigma_T^2 \\ & = \sigma^2_s + \sigma^2_d + \sigma^2_w\\ & = \sigma^2_A + \sigma^2_D + \sigma^2_E\\ \end{align*}` --- # Interpretation of variance components <div align="center"> <img src="sdkids.png" height=180> </div> ### Among-sire component `\(\sigma_s^2\)` This is the __variance between the means of half-sib families__ -- - A key concept in the __analysis of variance (ANOVA)__ is that: - The variance between groups is equal to the covariance within groups. - It therefore estimates the phenotypic __covariance of half sibs__. -- `\begin{align*} & \sigma_s^2 = Cov(HS) = \frac{1}{4}\sigma_A^2 \\ \end{align*}` --- # Interpretation of variance components ### Within-progeny component `\(\sigma_w^2\)` - Another key concept in the __analysis of variance (ANOVA)__ is: - The total variance = between-group variance + within-group variance -- - It follows that the __within-group variance = total variance - covariance of members of the groups__. -- Within-dams are full-sibs, therefore, `\begin{align*} \sigma_w^2 & = V_P - Cov(FS) \\ & = \sigma^2_A + \sigma^2_D + \sigma^2_E - (\frac{1}{2}\sigma^2_A + \frac{1}{4}\sigma^2_D) \\ & = \frac{1}{2}\sigma^2_A + \frac{3}{4}\sigma^2_D + \sigma^2_E \end{align*}` --- # Interpretation of variance components ### Among-dam component `\(\sigma_d^2\)` `\begin{align*} \sigma_d^2 & = \sigma_P^2 - \sigma_s^2 - \sigma_w^2 \\ & = \sigma^2_A + \sigma^2_D + \sigma^2_E - \frac{1}{4}\sigma_A^2 - (\frac{1}{2}\sigma^2_A + \frac{3}{4}\sigma^2_D + \sigma^2_E) \\ & = \frac{1}{4}\sigma^2_A + \frac{1}{4}\sigma^2_D \end{align*}` -- Alternatively, `\begin{align*} \sigma_w^2 & = V_p - Cov(FS) \\ \sigma_s^2 & = Cov(HS) \\ \sigma_d^2 & = \sigma_P^2 - \sigma_s^2 - \sigma_w^2 \\ & = V_p - Cov(HS) - V_p + Cov(FS) \\ & = Cov(FS) - Cov(HS) \end{align*}` --- # Summary of the variance components <div align="center"> <img src="sdkids.png" height=200> </div> | Observational | Covariance and causal components | Estimated values | | :------------: | :-------: | :----: | | Sires | `\(\sigma_s^2 = Cov(HS)\)` | ? | | Dams | `\(\sigma_d^2 = Cov(FS) - Cov(HS)\)` | ? | | Progeny | `\(\sigma_w^2 = V_P - Cov(FS)\)` | ? | | Total | `\(\sigma_T^2 = V_P = \sigma_s^2 + \sigma_d^2 + \sigma_w^2\)` | ? | | Sires + Dams | `\(\sigma_s^2 + \sigma_d^2 = Cov(FS)\)` | ? | --- # Summary of the variance components | Observational | Covariance and causal components | Estimated values | | :------------: | :-------: | | | Sires | `\(\sigma_s^2 = Cov(HS)\)` | `\(=\frac{1}{4}\sigma_A^2\)` | | Dams | `\(\sigma_d^2 = Cov(FS) - Cov(HS)\)` | `\(=\frac{1}{4}\sigma_A^2 + \frac{1}{4}\sigma_D^2\)` | | Progeny | `\(\sigma_w^2 = V_P - Cov(FS)\)` | `\(= \frac{1}{2}\sigma_A^2 +\frac{3}{4}\sigma_D^2\)` | | Total | `\(\sigma_T^2 = V_P = \sigma_s^2 + \sigma_d^2 + \sigma_w^2\)` | `\(=\sigma_A^2 + \sigma_D^2 + \sigma_E^2\)` | | Sires + Dams | `\(\sigma_s^2 + \sigma_d^2 = Cov(FS)\)` | `\(=\frac{1}{2}\sigma_A^2 + \frac{1}{4}\sigma_D^2\)` | -- #### Variance componenets in a sib design | Source | df | E(MS) | Estimated values | | :------: | :----------: | :--------------------:| :------: | | Sires | s-1 | `\(\sigma_w^2 + n\sigma_d^2 + dn\sigma_s^2\)` | `\(= \frac{1}{2}\sigma_A^2 +\frac{3}{4}\sigma_D^2 + \frac{n}{4}\sigma_A^2 + \frac{n}{4}\sigma_D^2 + \frac{dn}{4}\sigma_A^2\)` | | Dams (Sires) | s(d-1) | `\(\sigma_w^2 + n\sigma_d^2\)` | `\(= \frac{1}{2}\sigma_A^2 +\frac{3}{4}\sigma_D^2 + \frac{n}{4}\sigma_A^2 + \frac{n}{4}\sigma_D^2\)` | | Sibs (Dams) | sd(n-1) | `\(\sigma_w^2\)` | `\(= \frac{1}{2}\sigma_A^2 +\frac{3}{4}\sigma_D^2\)` | --- # Example: a sib experiment - A balanced experimental data collected from 100 sires each mated to 4 dams. - Have body length records of 5 male and 5 female offspring from each dam. - Get `\(h^2\)` for body length? -- ### __ANOVA__ table for body length: | Source | Mean Sq | Value | | :------------: | :-----------: | :-------: | | Between Sires | `\(MS_s\)` | =7.83 | | Between Dams | `\(MS_d\)` | =4.51 | | Within progenies | `\(MS_w\)` | =1.27 | --- # A sib experiment #### __ANOVA__ table for body length: | Source | Value | Mean Sq | Expectation of MS | | :------------: | :-------: | :-------: | :-------: | | Between Sires | 7.83 | `\(MS_s\)` | `\(= \sigma_w^2 + n\sigma_d^2 + dn\sigma_s^2\)` | | Between Dams | 4.51 | `\(MS_d\)` | `\(= \sigma_w^2 + n\sigma_d^2\)` | | Within progenies | 1.27 | `\(MS_w\)` | `\(= \sigma_w^2\)` | -- First get `\(V_P\)`: `\begin{align*} & \sigma_w^2 = MS_w = 1.27 \\ & \sigma_d^2 = (MS_d - \sigma_w^2)/n = (4.51-1.27)/10 = 0.324 \\ & \sigma_s^2 = (MS_s - MS_d)/(dn) = (7.83-4.51)/(4 \times 10) = 0.083 \\ & \sigma^2_P = \sigma_d^2 + \sigma_s^2 + \sigma_w^2 = 1.27 + 0.324 + 0.083 = 1.677 \\ \end{align*}` -- Then get `\(V_A\)`: `\begin{align*} & \sigma^2_s = \sigma_A^2/4\\ & \sigma_A^2 = 0.083 \times 4 = 0.332 \\ \end{align*}` --- # A sib experiment #### __ANOVA__ table for body length: | Source | Value | Mean Sq | Expectation of MS | | :------------: | :-------: | :-------: | :-------: | | Between Sires | 7.83 | `\(MS_s\)` | `\(= \sigma_w^2 + n\sigma_d^2 + dn\sigma_s^2\)` | | Between Dams | 4.51 | `\(MS_d\)` | `\(= \sigma_w^2 + n\sigma_d^2\)` | | Within progenies | 1.27 | `\(MS_w\)` | `\(= \sigma_w^2\)` | First get `\(V_P\)`: `\begin{align*} & \sigma^2_P = \sigma_d^2 + \sigma_s^2 + \sigma_w^2 = 1.27 + 0.324 + 0.083 = 1.677 \\ \end{align*}` Then get `\(V_A\)`: `\begin{align*} & \sigma_A^2 = 0.083 \times 4 = 0.332 \\ \end{align*}` -- Finally `\(h^2\)` `\begin{align*} & h^2 = \frac{\sigma^2_A}{\sigma^2_P} = 0.332/1.677 = 0.198\\ \end{align*}` --- # Precision and design ### Data collection must be practical - time/cost/etc is usually the important determinant -- ### Be freedom from bias - Random mating - Absence of common environmental effects, e.g. maternal effects. --- # Precision and design If we want to design a balanced experiment: - `\(s\)` sires each mated to `\(d\)` dams - Each dam has `\(n\)` progenies. <div align="center"> <img src="sdkids.png" height=200> </div> -- #### Questions before experimental design? 1. Parent-offspring, half-sib, full-sib, or others? 1. How many families? 2. Numbers of progeny? 3. What if it is unbalanced? --- # Sampling variance of `\(b\)` F & M page 178, the sampling variance of the parent-offspring regression ( `\(b\)` ) is approximately: `\begin{align*} SV_b = \frac{k[1+(n-1)t]}{nN} \end{align*}` - `\(N\)` families (offspring and parents) - `\(k\)` parents (1 or 2) for each family - `\(n\)` offspring per family - `\(t\)` the intra-class correlation between offspring in a family -- ### One parent Sampling variance is minimal when `\(n=1\)`, i.e. `\((n-1)t=0\)`. -- The most efficient design: 1. as many families as possible 2. measure only one offspring per family --- # One parent `\begin{align*} & SV(h^2=2b) = 4/N \\ & s.e.(h^2) = 2/\sqrt{N} \\ \end{align*}` -- ```r N=1:1000 se <- 2/sqrt(N) plot(N, se, type="l", lwd=5, col="red") ``` <img src="w12_c1_files/figure-html/unnamed-chunk-1-1.png" width="45%" style="display: block; margin: auto;" />