class: center, middle, inverse, title-slide .title[ # Genetic and Environmental covariance ] .author[ ### Jinliang Yang ] .date[ ### April 3, 2024 ] --- # General framework for genetic covariance <div align="center"> <img src="cow_xy.png" height=230> </div> -- If allele `\(x_i\)` carried by individual X is IBD to allele `\(y_k\)` in Y, then the covariance due to this allele is: `\begin{align*} Cov(\alpha_i, \alpha_k) & = E[(\alpha_i - \mu_{\alpha})(\alpha_k - \mu_{\alpha})] \\ & = E[(\alpha_i - \mu_{\alpha})^2] \\ & = \sigma_{\alpha}^2 \end{align*}` Because `\(\alpha_i = \alpha_k\)` if alleles `\(x_i\)` and `\(y_k\)` are IBD. --- # Additive genetic covariance Alleles in individuals `\(X (x_ix_j)\)` and `\(Y (y_ky_l)\)` can be IBD through four possible events: -- <div align="center"> <img src="cow_4ibd.png" height=230> </div> `\begin{align*} & x_i \equiv y_k \\ & x_i \equiv y_l \\ & x_j \equiv y_k \\ & x_j \equiv y_l \\ \end{align*}` --- # Additive genetic covariance Therefore, the covariance due to additive genetic effects: `\begin{align*} Cov_\alpha(X, Y) = & P(x_i \equiv y_k)Cov(\alpha_i, \alpha_k) + P(x_i \equiv y_l)Cov(\alpha_i, \alpha_l) \\ & + P(x_j \equiv y_k)Cov(\alpha_j, \alpha_k) + P(x_j \equiv y_l)Cov(\alpha_j, \alpha_l) \\ = & 4f_{XY}\sigma_\alpha^2 \\ = & 2f_{XY}\sigma_A^2 \\ \end{align*}` Because `\(\sigma_A^2 = \sigma_{\alpha_i}^2 + \sigma_{\alpha_j}^2 = 2\sigma_\alpha^2\)` and `\(\alpha_i = \alpha_k\)` when alleles `\(i\)` and `\(k\)` are IBD. --- # Covariance due to dominance deviations To get dominance deviations, must be two alleles IBD: <div align="center"> <img src="cow_dom.png" height=100> </div> -- `\begin{align*} & x_i \equiv y_k, x_j \equiv y_l\\ & x_j \equiv y_l, x_j \equiv y_k \\ \end{align*}` -- Therefore, `\begin{align*} Cov_\delta(X, Y) = & P(x_i \equiv y_k, x_j \equiv y_l)Cov(\delta_{ij}, \delta_{kl}) + P(x_j \equiv y_l, x_j \equiv y_k)Cov(\delta_{ij}, \delta_{kl}) \\ = & (P(x_i \equiv y_k, x_j \equiv y_l) + P(x_j \equiv y_l, x_j \equiv y_k))Cov(\delta_{ij}, \delta_{kl}) \\ = & \Delta_{XY}\sigma_D^2 \\ \end{align*}` --- # Genetic covariances for general relatives `\begin{align*} & Cov_\alpha(X, Y) = 2f_{XY}\sigma_A^2 \\ & Cov_\delta(X, Y) = \Delta_{XY}\sigma_D^2 \\ \end{align*}` -- The genetic covariance between relative now is: `\begin{align*} Cov_G(X, Y) = 2f_{XY}\sigma_A^2 + \Delta_{XY}\sigma_D^2 \\ \end{align*}` -- ### Simplify it: `\begin{align*} Cov_G = r\sigma_A^2 + u\sigma_D^2 \end{align*}` Where, `\begin{align*} & r = 2f_{XY} \\ & u = \Delta_{XY} \\ \end{align*}` --- # Genetic covariances for general relatives `\begin{align*} & Cov_G = 2f_{XY}\sigma_A^2 + \Delta_{XY}\sigma_D^2 \\ & Cov_G = r\sigma_A^2 + u\sigma_D^2 \\ \end{align*}` Note that `\(u\)` is normally zero unless they IBD through __both of their respective parents__. for example, full sibs and double first cousins. -- | Relationship | | Coancestry | r (of `\(\sigma^2_A\)`) | u (of `\(\sigma^2_D\)`) | | :-------: | :-------: | :------: | :-----------: | :----------: | :-----------: | | First degree | Parent:offspring | 1/4 | ? | 0 | | Second degree | Half sibs | 1/8 | ? | 0 | | | Full sibs | 1/4 | ? | __1/4__ | | | Grantparent:offspring | 1/8 | ? | 0 | | Third degree | great-grantparent:offspring | 1/16 | ? | 0 | --- # Genetic covariances for general relatives `\begin{align*} & Cov_G = 2f_{XY}\sigma_A^2 + \Delta_{XY}\sigma_D^2 \\ & Cov_G = r\sigma_A^2 + u\sigma_D^2 \\ \end{align*}` Note that `\(u\)` is normally zero unless they IBD through __both of their respective parents__. for example, full sibs and double first cousins. | Relationship | | Coancestry | r (of `\(\sigma^2_A\)`) | u (of `\(\sigma^2_D\)`) | | :-------: | :-------: | :-----------: | :-----------: | :-------: | :-------: | | First degree | Parent:offspring | 1/4 | 1/2 | 0 | | Second degree | Half sibs | 1/8 | 1/4 | 0 | | | Full sibs | 1/4 | 1/2 | __1/4__ | | | Grantparent:offspring | 1/8 | 1/4 | 0 | | Third degree | great-grantparent:offspring | 1/16 | 1/8 | 0 | --- # Genetic covariances for general relatives `\begin{align*} & Cov_G = 2f_{XY}\sigma_A^2 + \Delta_{XY}\sigma_D^2 \\ & Cov_G = r\sigma_A^2 + u\sigma_D^2 \\ \end{align*}` Note that `\(u\)` is normally zero unless they IBD through __both of their respective parents__. for example, full sibs and double first cousins. | Relationship | `\(f_{XY}\)` | r | u | Regression (b) or correlation (t) | | :-------: | :-------: | :-----------: | :-----------: | :-------: | :-------: | :---:| | Parent:Offspring | 1/4 | 1/2 | 0 | `\(b=\frac{Cov_{OP}}{V_P}=\frac{1}{2}\frac{V_A}{V_P}\)` | | Mid-Parent:Offspring | 1/4 | 1/2 | 0 | `\(b=\frac{Cov_{O\bar{P}}}{V_\bar{P}}=\frac{V_A}{V_P}\)` | | Half sibs | 1/8 | 1/4 | 0 | `\(t=\frac{Cov_{HS}}{V_P}=\frac{1}{4}\frac{V_A}{V_P}\)` | | Full sibs | 1/4 | 1/2 | 1/4 | `\(t=\frac{Cov_{FS}}{V_P}=\frac{1}{2}\frac{V_A}{V_P} + \frac{1}{4}\frac{V_D}{V_P}\)` | Note that `\(V_P\)` is the variance of parents. --- # Genetic covariances for general relatives Note that though the covariance of offspring with the mean of both parents is the same, the __degree of resemblance__ is not the same. -- It is defined as the regression of offspring on mid-parent values: `\begin{align*} b=\frac{Cov_{O\bar{P}}}{V_\bar{P}}=\frac{1/2V_A}{V_\bar{P}} \end{align*}` where `\(V_\bar{P}\)` is the variance of mid-parent value. -- Note that the variance of the mean of `\(n\)` individuals is one `\(n\)`th of the variance of single individuals. `\begin{align*} b=& \frac{Cov_{O\bar{P}}}{V_\bar{P}}=\frac{1/2V_A}{V_\bar{P}} \\ =& \frac{1/2V_A}{1/2V_{P}} = \frac{V_A}{V_P} \end{align*}` --- # Epistasis <div align="center"> <img src="epistasis.png" height=300> </div> When epistasis is present, alleles that are IBD across multiple loci: --- # Additive by additive epistasis `\(\sigma_{AA}^2\)` <div align="center"> <img src="epistasis.png" height=200> </div> #### __At the first locus__: Random allele from X and a random allele from Y are IBD. This can occur through four possible events, each with probability of `\(f_{XY}\)`. -- #### __At the 2nd locus__: Same is true for the 2nd locus. --- ### Joint probability - There are __ 16 different pairs__ meeting the two conditions. - The joint probability of each pair of alleles is __ `\(f_{XY}^2\)`__. - The probability both conditions are met, therefore, is __ `\(16f_{XY}^2\)`__. -- ### The two locus epistatic effect `\begin{align*} I_{ijkl} = & \alpha_{i}\alpha_{k} + \alpha_{i}\alpha_{l} + \alpha_{j}\alpha_{k} + \alpha_{j}\alpha_{l} \\ & + \alpha_{i}\delta_{kl} + \alpha_{j}\delta_{kl} + \delta_{ij}\alpha_{k} + \delta_{ij}\alpha_{l} \\ & + \delta_{ij}\delta_{kl} \\ \end{align*}` - The first four terms are additive by additive epistatic effects. -- ### Variance of the additive by additive `\begin{align*} \sigma^2_{AA} = & \sigma^2_{\alpha_{i}\alpha_{k}} + \sigma^2_{\alpha_{i}\alpha_{l}} + \sigma^2_{\alpha_{j}\alpha_{k}} + \sigma^2_{\alpha_{j}\alpha_{l}} \\ = & 4 \sigma^2_{\alpha} \end{align*}` --- ### Joint probability - There are __ 16 different pairs__ meeting the two conditions. - The joint probability of each pair of alleles is __ `\(f_{XY}^2\)`__. - The probability both conditions are met, therefore, is __ `\(16f_{XY}^2\)`__. -- #### For two relatives: The covariance due to the additive epistasis is: `\begin{align*} Cov(I_{AA}, I'_{AA}) = & Cov( \alpha_{i}\alpha_{k} + \alpha_{i}\alpha_{l} + \alpha_{j}\alpha_{k} + \alpha_{j}\alpha_{l}, \alpha_{i}\alpha_{k} + \alpha_{i}\alpha_{l} + \alpha_{j}\alpha_{k} + \alpha_{j}\alpha_{l}) \\ = & 16f_{XY}^2 Cov(\alpha_{i}\alpha_{k}, \alpha_{i}\alpha_{k}) \\ = & 16f_{XY}^2 Var(\alpha_{i}\alpha_{k}) \\ = & 16f_{XY}^2 \sigma^2_{\alpha} \\ = & 4f_{XY}^2 \sigma^2_{AA} \\ = & r^2 \sigma^2_{AA} \end{align*}` --- # Covariance considering epistasis By including two loci epistatic effects, the genetic covariance between relatives can be extended to: `\begin{align*} Cov_G = r\sigma_A^2 + u\sigma_D^2 + r^2\sigma^2_{AA} + ru\sigma^2_{AD} + u^2\sigma^2_{DD} \end{align*}` -- If considering three loci interactions, `\begin{align*} Cov_G = & r\sigma_A^2 + u\sigma_D^2 + r^2\sigma^2_{AA} + ru\sigma^2_{AD} + u^2\sigma^2_{DD} \\ & + u^3\sigma_{AAA}^2 + ... \end{align*}` -- Notice that the coefficients in front of the variance components become __smaller and smaller__ as more loci are added to the epistatic component. --- # Environmental covariance ### Common environment ( `\(V_{Ec}\)`) __Between-group__ environmental component. - e.g. litters of mice reared together -- - sources of the common environmental variance: - nutrition, climatic conditions or, in human, cultural influences. --- # Environmental covariance ### Maternal effects The young are subject to a maternal environment during the first stages of their life. - e.g. larger mice give more milk -- ### Competition effects __Reduce__ resemblance between relatives - members of the same family compete for limited resources, e.g. food.