class: center, middle, inverse, title-slide .title[ # Resemblance between relatives ] .author[ ### Jinliang Yang ] .date[ ### April 1, 2024 ] --- # Why we study resemblance? Resemblance (=covariance) between related individuals. -- __Heritability__ is the central concept in quantitative genetics - Proportion of variation due to additive genetic values (__Breeding values__) `\begin{align*} h^2 = \frac{\sigma^2_A}{\sigma^2_P} \end{align*}` -- #### Phenotypes (and `\(\sigma^2_P\)`) can be directly measured. -- #### How about `\(\sigma^2_A\)` ? - Estimates of `\(\sigma^2_A\)` require __known collections of relatives__. --- # Types of Relatives ### Ancestral relatives - Parent and offspring - Grandparent and offspring ### Collateral relatives - Half sibs: have one parent in common - Full sibs: have both parents in common - Twins --- # Relatives (full sib families) <div align="center"> <img src="relatives.png" height=300> </div> #### Full sibs - have both parents in common --- # Relatives (half sib families) <div align="center"> <img src="sibs.png" height=300> </div> #### Half sibs - have one parent in common --- # Relatives (half sib families) <div align="center"> <img src="sibs.png" height=300> </div> ### A thought experiment Body weight of newborn piglets - In the 1st half family `\(O_{11}\)` ... `\(O_{3k}\)`, mean `\(=3 \pm 0.1\)` lb - In the 2nd half sib family `\(O_{n1}\)` ... `\(O_{nk}\)`, mean `\(=4 \pm 0.1\)` lb --- # Two key observations ### A thought experiment Body weight of newborn piglets - In the 1st half family `\(O_{11}\)` ... `\(O_{3k}\)`, mean `\(=3 \pm 0.1\)` lb - In the 2nd half sib family `\(O_{n1}\)` ... `\(O_{nk}\)`, mean `\(=4 \pm 0.1\)` lb ### Obs. One: If trait variation has a significant genetic basis, the __closer the relatives__, the __more similar their phenotypic values__. -- ### Obs. Two: The amount of __phenotypic resemblance__ among relatives for the trait provides an indication of the amount of __genetic variation__ for the trait. --- # Resemblance and genetic covariance ### Genetic covariance - Resemblance between relatives has the genetics basis - Genetic covariances arise because __two related individuals are more likely to share alleles__ than are two unrelated individuals -- ### Identical by descent (IBD) - Sharing alleles means having alleles that are __identical by descent (IBD)__. - If two alleles are __IBD__, then both copies of alleles can be traced back to a single copy in a recent common ancestor. --- # Genetic covariance between relatives <div align="center"> <img src="ibd-2.png" height=250> </div> -- ### Identify types of IBD? - No allele IBD - one allele IBD - two alleles IBD --- # Identical by descent (IBD) <div align="center"> <img src="ibd-2.png" height=250> </div> If allele `\(x_i\)` carried by individual X is IBD to allele `\(y_k\)` in Y, then the covariance due to this allele is: `\begin{align*} Cov(\alpha_i, \alpha_k) & = E[(\alpha_i - \mu_{\alpha})(\alpha_k - \mu_{\alpha})] \\ & = E[(\alpha_i - \mu_{\alpha})^2] \\ & = \sigma_{\alpha}^2 \end{align*}` Because `\(\alpha_i = \alpha_k\)` if alleles `\(x_i\)` and `\(y_k\)` are IBD. --- # Additive genetic covariance The additive genetic covariance between relatives is generated through individuals sharing average effects of alleles. -- Alleles in individuals `\(X (x_ix_j)\)` and `\(Y (y_ky_l)\)` can be IBD through four possible events: -- `\begin{align*} & x_i \equiv y_k \\ & x_i \equiv y_l \\ & x_j \equiv y_k \\ & x_j \equiv y_l \\ \end{align*}` -- `\begin{align*} Cov_\alpha(X, Y) = & P(x_i \equiv y_k)Cov(\alpha_i, \alpha_k) + P(x_i \equiv y_l)Cov(\alpha_i, \alpha_l) \\ & + P(x_j \equiv y_k)Cov(\alpha_j, \alpha_k) + P(x_j \equiv y_l)Cov(\alpha_j, \alpha_l) \\ = & 4f_{XY}\sigma_\alpha^2 \\ = & 2f_{XY}\sigma_A^2 \\ \end{align*}` Because `\(\sigma_A^2 = \sigma_{\alpha_i}^2 + \sigma_{\alpha_j}^2 = 2\sigma_\alpha^2\)` and `\(\alpha_i = \alpha_j\)` when alleles `\(i\)` and `\(j\)` are IBD. --- # Parent-offspring Recall that the __coefficient of co-ancestry ( `\(f_{XY}\)` from Ch.5)__ between a non-inbred parent and non-inbred offspring is 1/4. - Thus, the coefficient for `\(\sigma_A^2\)` is 1/2. -- Consider the convariance between parent (P) and offspring (O), - If we assume the two alleles of the parent are unrelated, - Then all offspring can't share a common dominance deviation ( `\(\sigma^2_D =0\)` ). Therefore, `\begin{align*} Cov(P, O) = \frac{1}{2}\sigma_A^2 \end{align*}` --- # Parent-offspring ### From Breeding value - Parent genotypic value: `\(G = A + D\)`. - Offspring (half the breeding value of the parents from __Ch.7__): `\(G=1/2A\)` -- `\begin{align*} Cov(P, O) & = Cov(A + D, \frac{1}{2}A) \\ & = \frac{1}{2}Cov(A, A) + \frac{1}{2}Cov(A, D) \\ & = \frac{1}{2}\sigma_A^2 \\ \end{align*}` Because `\(Cov(A, D) = 0\)` from __Ch.8__. --- # Parent-offspring | Genotype | Freq | Breeding Value | Dominance Deviation | Genotypic value | Offspring ( `\(\mu_G\)` ) | | :-------: | :-------: | :-----------: | :-------: | :-------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | `\(2q(\alpha - qd)\)` | ? | | `\(A_1A_2\)` | `\(2pq\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | `\((q-p)\alpha + 2pqd\)` | ? | | `\(A_2A_2\)` | `\(q^2\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | `\(-2p(\alpha + pd)\)` | ? | --- # Parent-offspring | Genotype | Freq | Breeding Value | Dominance Deviation | Genotypic value | Offspring ( `\(\mu_G\)` ) | | :-------: | :-------: | :-----------: | :-------: | :-------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | `\(2q(\alpha - qd)\)` | `\(q\alpha\)` | | `\(A_1A_2\)` | `\(2pq\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | `\((q-p)\alpha + 2pqd\)` | `\(1/2(q-p)\alpha\)` | | `\(A_2A_2\)` | `\(q^2\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | `\(-2p(\alpha + pd)\)` | `\(-p\alpha\)` | -- $$ `\begin{aligned} Cov(X, Y) & = E(XY) - E(X)E(Y) \\ \end{aligned}` $$ where, $$ `\begin{aligned} E(XY) = \sum_i \sum_j x_i y_j Pr(X = x_i, Y = y_j) \end{aligned}` $$ -- $$ `\begin{aligned} E(PO) = & p^2 \times 2q(\alpha-qd) \times q\alpha + 2pq \times ((q-p)\alpha+2pqd) \times 1/2(q-p)\alpha \\ & + q^2 \times (-2p(\alpha+pd)) \times (-p\alpha) \\ = & [2p^2q^2\alpha^2 - 2p^2q^3d\alpha] + [pq\alpha^2(q^2-2pq+p^2) + 2p^2q^2d\alpha(q-p)] \\ & + [2p^2q^2\alpha^2 + 2p^3q^2d\alpha] \\ = & pq\alpha^2(2pq + q^2 -2pq +p^2 + 2pq) + 2p^2q^2d\alpha(-q+q-p+p) \\ = & pq\alpha^2 \end{aligned}` $$ --- # Parent-offspring | Genotype | Freq | Breeding Value | Dominance Deviation | Genotypic value | Offspring ( `\(\mu_G\)` ) | | :-------: | :-------: | :-----------: | :-------: | :-------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | `\(2q(\alpha - qd)\)` | `\(q\alpha\)` | | `\(A_1A_2\)` | `\(2pq\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | `\((q-p)\alpha + 2pqd\)` | `\(1/2(q-p)\alpha\)` | | `\(A_2A_2\)` | `\(q^2\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | `\(-2p(\alpha + pd)\)` | `\(-p\alpha\)` | $$ `\begin{aligned} Cov(P, O) & = E(PO) - E(P)E(O) \\ \end{aligned}` $$ -- $$ `\begin{aligned} E(PO) = & pq\alpha^2 \\ E(O) = & 0 \end{aligned}` $$ -- Therefore, $$ `\begin{aligned} Cov(P, O) & = E(PO) - E(P)E(O) \\ & = pq\alpha^2 \\ & = 1/2 V_A \end{aligned}` $$ Because `\(V_A = 2pq\alpha^2\)`. --- # Offspring and mid-parent The covariance of the mean of the offspring and the mean of both parents (commonly called the __mid-parent__) Let `\(P\)` and `\(P'\)` be the values of the two parents, therefore `\(\bar{P}=1/2(P + P')\)` -- $$ `\begin{aligned} Cov(\bar{P}, O) & = Cov(1/2(P + P'), O) \\ & = 1/2(Cov(P,O) + Cov(P', O))\\ & = 1/2 V_A \end{aligned}` $$ If `\(P\)` and `\(P'\)` have the same variance. See _P149 of F&M_ for the algebraic reduction. --- # The genetic covariance for half sibs? <div align="center"> <img src="hs-covar.png" height=400> </div> --- # Genetic covariance for half sibs? `\begin{align*} Cov(1/2A, 1/2A) & = 1/4V_A\\ \end{align*}` -- | Genotype | Freq | Breeding Value | Dominance Deviation | Genotypic value | Offspring ( `\(\mu_G\)` ) | | :-------: | :-------: | :-----------: | :-------: | :-------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | `\(2q(\alpha - qd)\)` | `\(q\alpha\)` | | `\(A_1A_2\)` | `\(2pq\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | `\((q-p)\alpha + 2pqd\)` | `\(1/2(q-p)\alpha\)` | | `\(A_2A_2\)` | `\(q^2\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | `\(-2p(\alpha + pd)\)` | `\(-p\alpha\)` | -- `\begin{align*} Cov_{HS} = & p^2(q\alpha)^2 + 2pq \times 1/4(q-p)^2\alpha^2 + q^2 \times p^2\alpha^2 \\ =& pq\alpha^2[pq + 1/2(q-p)^2 + pq] \\ =& pq\alpha^2[1/2(p+q)^2] \\ =& 1/2pq\alpha^2 \\ = & 1/4V_A \end{align*}` --- # Additive genetic covariance for full sibs? - Additive value for full sibs: `\begin{align*} G_{o1} & = \frac{1}{2}A + \frac{1}{2}A'\\ G_{o2} & = \frac{1}{2}A + \frac{1}{2}A'\\ \end{align*}` -- - The additive genetic covariance for full sibs: `\begin{align*} Cov(G_{o1}, G_{o2}) = & Cov(\frac{1}{2}A + \frac{1}{2}A', \frac{1}{2}A + \frac{1}{2}A') \\ = & Var(\frac{1}{2}(A + A')) \\ = & \frac{1}{4}(\sigma_A^2 + \sigma^2_{A'}) \\ = & \frac{1}{2}\sigma_A^2 \\ \end{align*}` --- # Dominance genetic covariance for full sibs? - Among the progeny, only __four possible genotypes__, each with a frequency of 1/4. - `\(A_1A_3\)`, `\(A_1A_4\)`, `\(A_2A_3\)`, `\(A_2A_4\)` -- - Let the first sib has any of these genotypes. The 2nd has the same genotype is 1/4. - Thus one-quarter of all sib-pairs have the same genotype and consequently the same dominance deviation, `\(D\)`. -- - Thus, the cross-product of the dominance deviation is `\(\sigma_D^2\)`, times frequency 1/4 = `\(1/4\sigma_D^2\)` --- # Genetic covariance for full sibs? ### The genetic covariance of full sibs is therefore, `\begin{align*} Cov_{FS} = \frac{1}{2}\sigma_A^2 + \frac{1}{4}\sigma_D^2 \end{align*}` -- ### Covariance of half sibs `\begin{align*} Cov_{HS} = \frac{1}{4}\sigma_A^2 \end{align*}` -- In principle, dominance variance can be calculated using full sibs and half sibs: `\begin{align*} Cov_{FS} - 2Cov_{HS} = & \frac{1}{2}\sigma_A^2 + \frac{1}{4}\sigma_D^2 - 2 \times \frac{1}{4}\sigma_A^2 \\ = & \frac{1}{4}\sigma_D^2 \end{align*}` --- # Twins ### Monozygotic (identical) twins $$ Cov_{MZ} = V_G $$ ### Dizygotic (fraternal) twins - Not identical twins - = Full sibs --- # Summary | Relationship | | r (of `\(\sigma^2_A\)`) | u (of `\(\sigma^2_D\)`) | | :-------: | :-------: | :-----------: | :-------: | :-------: | | Identical twins | | 1 | 1| | First degree | Parent-offspring | 1/2 | 0 | | Second degree | Half sibs | 1/4 | 0 | | | Full sibs | 1/2 | 1/4 | -- ### General framework for calculating resemblance Alleles shared between relatives that are __identical by descent (IBD)__ contribute to the covariance between relatives. For example, if `\(\sigma_A^2 = 0\)`, meaning no variation in breeding values exists in the population for the trait of interest, then shared average allelic effects will not contribute to resemblance. `\(u \neq 0\)` only if the relatives having the same genotype through two alleles IBD.