+ - 0:00:00
Notes for current slide
Notes for next slide

Visualize thetas and Fst results

Jinliang Yang

Feb. 13th, 2020

1 / 14

Visualize the results

In local computer, using R:

Barplot for SFS

s <- scan('../../cache/out.sfs')
s <- s[-c(1,length(s))]
s <- s/sum(s)
barplot(s,names=1:length(s), main='SFS')

Histgram distribution of the theta values

hist(t$Pairwise)

Scatter plot of the Fst values

fst <- read.table("cache/fst_win.txt", skip=1, header=FALSE)
names(fst)[c(3,5)] <- c("midp", "fst")
plot(fst$midp, fst$fst, xlab="Physical position", ylab="Fst", col="#5f9ea0", pch=16)
2 / 14

General feature format (GFF) from EnsemblPlants

Maize reference genome

change to largedata\lab4 folder:

wget ftp://ftp.ensemblgenomes.org/pub/plants/release-46/fasta/zea_mays/dna/Zea_mays.B73_RefGen_v4.dna.chromosome.Mt.fa.gz
### then unzip it
gunzip Zea_mays.B73_RefGen_v4.dna.chromosome.Mt.fa.gz

Similarly, we will download and unzip the Mt GFF3 file

3 / 14

General feature format (GFF) from EnsemblPlants

Maize reference genome

change to largedata\lab4 folder:

wget ftp://ftp.ensemblgenomes.org/pub/plants/release-46/fasta/zea_mays/dna/Zea_mays.B73_RefGen_v4.dna.chromosome.Mt.fa.gz
### then unzip it
gunzip Zea_mays.B73_RefGen_v4.dna.chromosome.Mt.fa.gz

Similarly, we will download and unzip the Mt GFF3 file

Use R to process the GFF3 file

# install.package("data.table")
library("data.table")
## simply read in wouldn't work
gff <- fread("largedata/lab4/Zea_mays.B73_RefGen_v4.46.chromosome.Mt.gff3", skip="#", header=FALSE, data.table=FALSE)
## grep -v means select lines that not matching any of the specified patterns
gff <- fread(cmd='grep -v "#" largedata/lab4/Zea_mays.B73_RefGen_v4.46.chromosome.Mt.gff3', header=FALSE, data.table=FALSE)
4 / 14

General feature format (GFF) version 3

V1 V2 V3 V4 V5 V6 V7 V8
1 Mt Gramene chromosome 1 569630 . . .
2 Mt ensembl gene 6391 6738 . + .
3 Mt NCBI mRNA 6391 6738 . + .
4 Mt NCBI exon 6391 6738 . + .
5 Mt NCBI CDS 6391 6738 . + 0
6 Mt ensembl gene 6951 8285 . + .
V9
1 ID=chromosome:Mt;Alias=AY506529.1,NC_007982.1;Is_circular=true
2 ID=gene:ZeamMp002;biotype=protein_coding;description=orf115-a1;
3 ID=transcript:ZeamMp002;Parent=gene:ZeamMp002;
4 Parent=transcript:ZeamMp002;Name=ZeamMp002.exon1;constitutive=1;ensembl_end_phase=0;
5 ID=CDS:ZeamMp002;Parent=transcript:ZeamMp002;
6 ID=gene:ZeamMp003;biotype=protein_coding;description=orf444
5 / 14

General feature format (GFF) version 3

V1 V2 V3 V4 V5 V6 V7 V8
1 Mt Gramene chromosome 1 569630 . . .
2 Mt ensembl gene 6391 6738 . + .
V9
1 ID=chromosome:Mt;Alias=AY506529.1,NC_007982.1;Is_circular=true
2 ID=gene:ZeamMp002;biotype=protein_coding;description=orf115-a1;

  • 1 sequence: The name of the sequence where the feature is located.

  • 2 source: Keyword identifying the source of the feature, like a program (e.g. RepeatMasker) or an organization (like ensembl).

  • 3 feature: The feature type name, like "gene" or "exon".

    • In a well structured GFF file, all the children features always follow their parents in a single block (so all exons of a transcript are put after their parent "transcript" feature line and before any other parent transcript line).
  • 4 start: Genomic start of the feature, with a 1-base offset.

    • This is in contrast with other 0-offset half-open sequence formats, like BED.
6 / 14

General feature format (GFF) version 3

V1 V2 V3 V4 V5 V6 V7 V8
1 Mt Gramene chromosome 1 569630 . . .
2 Mt ensembl gene 6391 6738 . + .
V9
1 ID=chromosome:Mt;Alias=AY506529.1,NC_007982.1;Is_circular=true
2 ID=gene:ZeamMp002;biotype=protein_coding;description=orf115-a1;

  • 5 end: Genomic end of the feature, with a 1-base offset.

    • This is the same end coordinate as it is in 0-offset half-open sequence formats, like BED.
  • 6 score: Numeric value that generally indicates the confidence of the source in the annotated feature.

    • A value of "." (a dot) is used to define a null value.
  • 7 strand: Single character that indicates the strand of the feature.

    • it can assume the values of "+" (positive, or 5' -> 3'),
    • "-", (negative, or 3' -> 5'), "." (undetermined).
7 / 14

General feature format (GFF) version 3

V1 V2 V3 V4 V5 V6 V7 V8
1 Mt Gramene chromosome 1 569630 . . .
2 Mt ensembl gene 6391 6738 . + .
V9
1 ID=chromosome:Mt;Alias=AY506529.1,NC_007982.1;Is_circular=true
2 ID=gene:ZeamMp002;biotype=protein_coding;description=orf115-a1;

  • 8 phase: phase of CDS (means CoDing Sequence) features.

    • The phase indicates where the feature begins with reference to the reading frame.
    • The phase is one of the integers 0, 1, or 2, indicating the number of bases that should be removed from the beginning of this feature to reach the first base of the next codon.
  • 9 attributes: All the other information pertaining to this feature.

    • The format, structure and content of this field is the one which varies the most between the three competing file formats.
8 / 14

Work with GFF

names(gff) <- c("seq", "source", "feature", "start", "end", "score", "strand", "phase", "att")
table(gff$feature)

Get genes and upstream and downstream 5kb regions

g <- subset(gff, feature %in% "gene")
g$geneid <- gsub(".*gene:|;biotype.*", "", g$att)
### + strand
gp <- subset(g, strand %in% "+")
# nrow(gp) 75
### get the 5k upstream of the + strand gene model
gp_up <- gp
gp_up$end <- gp_up$start - 1
gp_up$start <- gp_up$end - 5000
### get the 5k downstream of the + strand gene model
gp_down <- gp
gp_down$start <- gp_down$end + 1
gp_down$end <- gp_down$start + 5000
9 / 14

Get genes and upstream and downstream 5kb regions

### - strand
gm <- subset(g, strand %in% "-")
dim(gm) # 82
fwrite(g, "cache/mt_gene.txt", sep="\t", row.names = FALSE, quote=FALSE)
10 / 14

Intepret the theta results

library("data.table")
library("GenomicRanges")
library("plyr")
theta <- fread("cache/theta.txt", data.table=FALSE)
names(theta)[1] <- "seq"
up5k <- read.table("cache/mt_gene_up5k.txt", header=TRUE)
### define the subject file for theta values
grc <- with(theta, GRanges(seqnames=seq, IRanges(start=Pos, end=Pos)))
### define the query file for genomic feature
grf <- with(up5k, GRanges(seqnames=seq, IRanges(start=start, end=end), geneid=geneid))
### find overlaps between the two
tb <- findOverlaps(query=grf, subject=grc)
tb <- as.matrix(tb)
out1 <- as.data.frame(grf[tb[,1]])
out2 <- as.data.frame(grc[tb[,2]])
### for each genomic feature, find the sites with non-missing data
out <- cbind(out1, out2[, "start"])
names(out)[ncol(out)] <- "pos"
11 / 14

Intepret the theta results

#define unique identifier and merge with the thetas
out$uid <- paste(out$seqnames, out$pos, sep="_")
theta$uid <- paste(theta$seq, theta$Pos, sep="_")
df <- merge(out, theta[, c(-1, -2)], by="uid")
# for each upstream 5k region, how many theta values
mx <- ddply(df, .(geneid), summarise,
Pairwise = mean(Pairwise, na.rm=TRUE),
thetaH = mean(thetaH, na.rm=TRUE),
nsites = length(uid))
12 / 14

Intepret the theta results

Copy and paste everything above, and pack it into an R function:

get_mean_theta <- function(gf_file="cache/mt_gene_up5k.txt"){
# gf_file: gene feature file [chr, ="cache/mt_gene_up5k.txt"]
theta <- fread("cache/theta.txt", data.table=FALSE)
names(theta)[1] <- "seq"
up5k <- read.table(gf_file, header=TRUE)
### define the subject file for theta values
grc <- with(theta, GRanges(seqnames=seq, IRanges(start=Pos, end=Pos)))
### define the query file for genomic feature
grf <- with(up5k, GRanges(seqnames=seq, IRanges(start=start, end=end), geneid=geneid))
### find overlaps between the two
tb <- findOverlaps(query=grf, subject=grc)
tb <- as.matrix(tb)
out1 <- as.data.frame(grf[tb[,1]])
out2 <- as.data.frame(grc[tb[,2]])
### for each genomic feature, find the sites with non-missing data
out <- cbind(out1, out2[, "start"])
names(out)[ncol(out)] <- "pos"
#define unique identifier and merge with the thetas
out$uid <- paste(out$seqnames, out$pos, sep="_")
theta$uid <- paste(theta$seq, theta$Pos, sep="_")
df <- merge(out, theta[, c(-1, -2)], by="uid")
# for each upstream 5k region, how many theta values
mx <- ddply(df, .(geneid), summarise,
Pairwise = mean(Pairwise, na.rm=TRUE),
thetaH = mean(thetaH, na.rm=TRUE),
nsites = length(uid))
return(mx)
}
13 / 14

Plot the results

Run the customized R function

### apply the function
up5k <- get_mean_theta(gf_file="cache/mt_gene_up5k.txt")
down5k <- get_mean_theta(gf_file="cache/mt_gene_down5k.txt")

And then plot the results:

library("ggplot2")
up5k$feature <- "up 5k"
down5k$feature <- "down 5k"
res <- rbind(up5k, down5k)
ggplot(res, aes(x=feature, y=Pairwise, fill=feature)) +
geom_violin(trim=FALSE)+
labs(title="Theta value", x="", y = "Log10 (theta)")+
geom_boxplot(width=0.1, fill="white")+
scale_fill_brewer(palette="Blues") +
theme_classic()
14 / 14

Visualize the results

In local computer, using R:

Barplot for SFS

s <- scan('../../cache/out.sfs')
s <- s[-c(1,length(s))]
s <- s/sum(s)
barplot(s,names=1:length(s), main='SFS')

Histgram distribution of the theta values

hist(t$Pairwise)

Scatter plot of the Fst values

fst <- read.table("cache/fst_win.txt", skip=1, header=FALSE)
names(fst)[c(3,5)] <- c("midp", "fst")
plot(fst$midp, fst$fst, xlab="Physical position", ylab="Fst", col="#5f9ea0", pch=16)
2 / 14
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow