Additive and dominance variance

Single locus

Because \(G = A + D\), then

\[\begin{align*} \sigma_G^2 & = \sigma_A^2 + \sigma_D^2 + 2\sigma_{A, D} \end{align*}\]

And \(\sigma_{A, D}=0\) in a HWE population, therefore,

\[\begin{align*} \sigma_G^2 & = \sigma_A^2 + \sigma_D^2 \end{align*}\]


Genotype Freq Breeding Value \(A^2\) Dominance Deviation \(D^2\)
\(A_1A_1\) \(p^2\) \(2q\alpha\) \((2q\alpha)^2\) \(-2q^2d\) \((-2q^2d)^2\)
\(A_1A_2\) \(2pq\) \((q-p)\alpha\) \((q-p)^2\alpha^2\) \(2pqd\) \((2pqd)^2\)
\(A_2A_2\) \(q^2\) \(-2p\alpha\) \((-2p\alpha)^2\) \(-2p^2d\) \((-2p^2d)^2\)

The additive and dominance genetic variance in a HWE population is:

\[\begin{align*} \sigma_A^2 & = 2pq(a + d(q-p))^2 \\ \sigma_D^2 & = (2pqd)^2 \\ \end{align*}\]

Graphic representation of Va, Vd, and Vg

  • Genetic variance components are typically maximized at intermediate allele frequencies.
  • Additive genetic variance typically makes up most of the genetic variance except in unusual situations, such as when overdominant gene action is present or allele frequencies are at the extremes.

Write the Vg function

\[\begin{align*} \sigma_A^2 & = 2pq(a + d(q-p))^2 \\ \sigma_D^2 & = (2pqd)^2 \\ \end{align*}\]

Complete dominance

Let’s find out at what allele freq that gives Vd > Va

##        p         va         vd         vg
## 68  0.67 0.19262232 0.19554084 0.38816316
## 69  0.68 0.17825792 0.18939904 0.36765696
## 70  0.69 0.16444632 0.18301284 0.34745916
## 71  0.70 0.15120000 0.17640000 0.32760000
## 72  0.71 0.13852952 0.16957924 0.30810876
## 73  0.72 0.12644352 0.16257024 0.28901376
## 74  0.73 0.11494872 0.15539364 0.27034236
## 75  0.74 0.10404992 0.14807104 0.25212096
## 76  0.75 0.09375000 0.14062500 0.23437500
## 77  0.76 0.08404992 0.13307904 0.21712896
## 78  0.77 0.07494872 0.12545764 0.20040636
## 79  0.78 0.06644352 0.11778624 0.18422976
## 80  0.79 0.05852952 0.11009124 0.16862076
## 81  0.80 0.05120000 0.10240000 0.15360000
## 82  0.81 0.04444632 0.09474084 0.13918716
## 83  0.82 0.03825792 0.08714304 0.12540096
## 84  0.83 0.03262232 0.07963684 0.11225916
## 85  0.84 0.02752512 0.07225344 0.09977856
## 86  0.85 0.02295000 0.06502500 0.08797500
## 87  0.86 0.01887872 0.05798464 0.07686336
## 88  0.87 0.01529112 0.05116644 0.06645756
## 89  0.88 0.01216512 0.04460544 0.05677056
## 90  0.89 0.00947672 0.03833764 0.04781436
## 91  0.90 0.00720000 0.03240000 0.03960000
## 92  0.91 0.00530712 0.02683044 0.03213756
## 93  0.92 0.00376832 0.02166784 0.02543616
## 94  0.93 0.00255192 0.01695204 0.01950396
## 95  0.94 0.00162432 0.01272384 0.01434816
## 96  0.95 0.00095000 0.00902500 0.00997500
## 97  0.96 0.00049152 0.00589824 0.00638976
## 98  0.97 0.00020952 0.00338724 0.00359676
## 99  0.98 0.00006272 0.00153664 0.00159936
## 100 0.99 0.00000792 0.00039204 0.00039996

Rice data

Download the Rice Diversity Panel data RiceDiversity.44K.MSU6.Genotypes_PLINK.zip from http://ricediversity.org/data/sets/44kgwas/.

Apply the function

##   N1         gv         bv         dd
## 1  0 -0.2222222 -0.4444444  0.2222222
## 2  1 -0.2222222  0.2222222 -0.4444444
## 3  2  1.7777778  0.8888889  0.8888889

Simulate a QTL

Simulate phenotype using genotype data given number of QTLs and heritability.