class: center, middle, inverse, title-slide # Genetic components of variance ### Jinliang Yang ### Oct. 17th, 2018 --- # Genotypic value | Genotype | Freq. | Value | Freq. `\(\times\)` Val. | | :-------: |: ------- :| :-------: | :-------: | | `\(A_1A_1\)` | `\(p^2\)` | `\(+a\)` | `\(p^2a\)` | | `\(A_1A_2\)` | `\(2pq\)` | `\(d\)` | `\(2pqd\)` | | `\(A_2A_2\)` | `\(q^2\)` | `\(-a\)` | `\(-q^2a\)` | | | | Sum = | `\(a(p-q) + 2pqd\)` | -- ### Parents pass on alleles, not genotypes. --- # Average Effect ### Definition of average effect: The average effect of `\(A_1\)` is the **mean deviation** from the **population mean** of individuals which received that allele from one parent, and the alleles received from the other parents being at random. -- According to Falconer & Mackey `Table 7.2`: `\begin{align*} \alpha_1 = q(a + d(q-p)) \end{align*}` `\begin{align*} \alpha_2 = -p(a + d(q-p)) \end{align*}` -- ### Allele substitution effect `\begin{align*} \alpha = & \alpha_1 - \alpha_2 \\ = & a + d(q-p) \end{align*}` --- # Breeding value (A) Breeding value is the "value" of an individual as a parent. Note that breeding value is population specific. ### Operational definition The deviation of the value of an individual's offspring from the population mean. ### Conceptual definition Sum of the average effects of the alleles an individual carries. `\begin{align*} BV = \sum_{i=1}^k\sum_{j=1}^2 \end{align*}` Where summation occurs across the number of loci (k) and the two alleles present at each locus. --- # Dominance deviation (D) We can examine the failure of the additive value to reflect the genotypic value as a deviation --- **a dominance deviation**. -- ### G = A + D | Genotype | Genotypic Value | Value as deviated from mean | Breeding Value | Dominance Deviation | | :-------: | :-------: | :-----------: | :-----------: | :-------: | :-------: | | `\(A_1A_1\)` | `\(a\)` | `\(2q(\alpha - qd)\)` | `\(2q\alpha\)` | `\(-2q^2d\)` | | `\(A_1A_2\)` | `\(d\)` | `\((q-p)\alpha + 2pqd\)` | `\((q-p)\alpha\)` | `\(2pqd\)` | | `\(A_2A_2\)` | `\(-a\)` | `\(-2p(\alpha + pd)\)` | `\(-2p\alpha\)` | `\(-2p^2d\)` | --- # Graphical Representation ```r a = 1; d = 3/4*a q = 1/5; p = 1 - q alpha <- a + d*(q - p) a1a1 <- 2*alpha*q a1a2 <- (q-p)*alpha a2a2 <- -2*p*alpha plot(c(0, 1, 2), c(-a, d, a), xlab="Genotype",ylab="", cex.lab=1.5, xaxt="n", pch=17, cex=2, col="red"); axis(1, at=c(0, 1, 2), labels=c("A2A2", "A1A2", "A1A1")); mtext("Breeding Value", side = 4, line = 1, cex=1.5, col="blue"); mtext("Genotypic Value", side = 2, line = 2, cex=1.5, col="red") points(c(0, 1, 2), c(a2a2, a1a2, a1a1), cex=2, col="blue") lines(c(0, 1, 2), c(a2a2, a1a2, a1a1), lwd=2, col="blue") ``` <img src="Ch8_c1_files/figure-html/unnamed-chunk-1-1.png" width="35%" style="display: block; margin: auto;" /> --- # Expectation and Variance ### Expectation `\(E(X)\)`: **a measure of the mean value of a variable** `\begin{align*} E[X] &= \mu_X \\ &= \sum\limits_{i=1}^kf(x_i)Pr(X = x_i) \end{align*}` -- ### Variance `\(Var(X)\)`: **a measure of the spread of a variable** `\begin{align*} Var(X) & = \sigma_X^2 \\ & = E[X^2] - E[X]^2 \\ \end{align*}` --- # Example Number of leaves per plant in a F1 population (N=25) crossed from two inbred lines of tobacco: ``` ## Warning: package 'knitr' was built under R version 3.4.3 ``` ``` ## Warning: package 'kableExtra' was built under R version 3.4.4 ``` <table> <thead> <tr> <th style="text-align:right;"> v1 </th> <th style="text-align:right;"> v2 </th> <th style="text-align:right;"> v3 </th> <th style="text-align:right;"> v4 </th> <th style="text-align:right;"> v5 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 18 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 13 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:right;"> 18 </td> <td style="text-align:right;"> 18 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 17 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> </tr> </tbody> </table> -- Then, made 25 F2 plants: <table> <thead> <tr> <th style="text-align:right;"> v1 </th> <th style="text-align:right;"> v2 </th> <th style="text-align:right;"> v3 </th> <th style="text-align:right;"> v4 </th> <th style="text-align:right;"> v5 </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 20 </td> <td style="text-align:right;"> 21 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:right;"> 20 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 13 </td> <td style="text-align:right;"> 18 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:right;"> 19 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 12 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:right;"> 17 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 15 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 17 </td> <td style="text-align:right;"> 16 </td> <td style="text-align:right;"> 18 </td> <td style="text-align:right;"> 13 </td> </tr> </tbody> </table> --- # Example ### Mean and variance of F1 and F2 populations? ```r f1 <- as.vector(as.matrix(f1)) f2 <- as.vector(as.matrix(f2)) mean(f1) ``` ``` ## [1] 15.72 ``` ```r mean(f2) ``` ``` ## [1] 15.84 ``` ```r var(f1) ``` ``` ## [1] 1.46 ``` ```r var(f2) ``` ``` ## [1] 5.973333 ``` --- # Example ```r library(ggplot2) ``` ``` ## Warning: package 'ggplot2' was built under R version 3.4.4 ``` ```r df <- rbind(data.frame(number=f1, pop="F1"), data.frame(number=f2, pop="F2")) ggplot(df, aes(x=pop, y=number, fill=pop)) + scale_fill_manual(values=c("#E69F00", "#56B4E9")) + geom_violin(trim=FALSE) ``` <img src="Ch8_c1_files/figure-html/unnamed-chunk-3-1.png" width="50%" style="display: block; margin: auto;" /> --- # Covariance To quantify to what extent the two variables **co-vary**. $$ `\begin{aligned} Cov(X, Y) & = \sigma_{XY} \\ & = E([X - E(X)][Y - E(Y)]) \\ & = E(XY) - E(X)E(Y) \\ \end{aligned}` $$ where, $$ `\begin{aligned} E(XY) = \sum_i \sum_j x_i y_j Pr(X = x_i, Y = y_j) \end{aligned}` $$ -- ### The variance of a sum `\begin{align*} & Var(X+Y) = Var(X) + Var(Y) + 2Cov(X, Y) \\ & \sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\sigma_{XY} \\ \end{align*}` --- # P = G + E `\begin{align*} & Var(P) = Var(G+E) \\ & \sigma_{P}^2 = \sigma_{G+E}^2 = \sigma_G^2 + \sigma_E^2 + 2\sigma_{GE} \end{align*}` - `\(\sigma_{G}^2\)` is the variance of the genotypic effects - `\(\sigma_{E}^2\)` is the variance of the environmental effects - `\(\sigma_{GE}\)` is the covariance between genotypic effects and environmental effects. Normally, we assume `\(\sigma_{GE} = 0\)` Therefore, `\begin{align*} & \sigma_{P}^2 = \sigma_G^2 + \sigma_E^2 \end{align*}` --- # Example ### Estimate the degree of genetic determination in the F2 generation. What assumptions have to be made to do this? ```r var(f1) ``` ``` ## [1] 1.46 ``` ```r var(f2) ``` ``` ## [1] 5.973333 ``` --- # Genetic variance partitioning The genotypic value could be partitioned into the breeding value and dominance deviation. ### Genotypic value: `\(G = A + D\)` `\begin{align*} & \sigma_{G}^2 = \sigma_A^2 + \sigma_D^2 \end{align*}` -- ### Breeding Value: `\(A = \alpha_i + \alpha_j\)` `\begin{align*} & \sigma_{A}^2 = \sigma_{\alpha_i}^2 + \sigma_{\alpha_i}^2 \end{align*}` Therefore, `\begin{align*} & \sigma_{G}^2 = \sigma_{\alpha_i}^2 + \sigma_{\alpha_j}^2 + \sigma_{\delta_{ij}}^2 \end{align*}`